
Solution to Math4230 Tutorial 12

1. Show that
(a) For the function f(x) = ‖x‖, we have

∂f(x) =

{
x/‖x‖ if x 6= 0,

{d|‖d‖ ≤ 1} if x = 0.

Solution:

4.2 (Chain Rule for Directional Derivatives)

For any d ∈ ℜn, by using the directional differentiability of f at x, we have

F (x + αd) − F (x) = g
(
f(x + αd)

)
− g

(
f(x)

)

= g
(
f(x) + αf ′(x; d) + o(α)

)
− g

(
f(x)

)
.

Let zα = f ′(x; d) + o(α)/α and note that zα → f ′(x; d) as α ↓ 0. By using this
and the assumed property of g, we obtain

lim
α↓0

F (x + αd) − F (x)

α
= lim

α↓0

g
(
f(x) + αzα

)
− g

(
f(x)

)

α
= g′(f(x); f ′(x; d)

)
,

showing that F is directionally differentiable at x and that the given chain rule
holds.

4.3

By definition, a vector d ∈ ℜn is a subgradient of f at x if and only if

f(y) ≥ f(x) + d′(y − x), ∀ y ∈ ℜn,

or equivalently
d′x − f(x) ≥ d′y − f(y), ∀ y ∈ ℜn.

Therefore, d ∈ ℜn is a subgradient of f at x if and only if

d′x − f(x) = max
y

{
d′y − f(y)

}
.

4.4

(a) For x ̸= 0, the function f(x) = ∥x∥ is differentiable with ∇f(x) = x/∥x∥, so
that ∂f(x) =

{
∇f(x)

}
=

{
x/∥x∥

}
. Consider now the case x = 0. If a vector d

is a subgradient of f at x = 0, then f(z) ≥ f(0) + d′z for all z, implying that

∥z∥ ≥ d′z, ∀ z ∈ ℜn.

By letting z = d in this relation, we obtain ∥d∥ ≤ 1, showing that ∂f(0) ⊂
{
d |

∥d∥ ≤ 1
}
.

On the other hand, for any d ∈ ℜn with ∥d∥ ≤ 1, we have

d′z ≤ ∥d∥ · ∥z∥ ≤ ∥z∥, ∀ z ∈ ℜn,

which is equivalent to f(0)+d′z ≤ f(z) for all z, so that d ∈ ∂f(0), and therefore{
d | ∥d∥ ≤ 1

}
⊂ ∂f(0).

42. Consider a proper convex function F of two vectors x ∈ Rn and y ∈ Rm.
For a fixed (x̄, ȳ) ∈ dom(F ), let ∂xF (x̄, ȳ) and ∂yF (x̄, ȳ) be the subdif-
ferentials of the functions F (·, ȳ) and F (x̄, ·) at x̄ and ȳ, respectively.
(a) Show that

∂F (x̄, ȳ) ⊂ ∂xF (x̄, ȳ) + ∂yF (x̄, ȳ),

and give an example showing that the inclusion may be strict in
general.

(b) Assume that F has the form

F (x, y) = h1(x) + h2(y) + h(x, y)

where h1 and h2 are proper convex functions, and h is convex, real-
valued, and differentiable. Show that the formula of part (a) holds
with equality.

Solution:
1



(iii) The set 

M = {(u, w) 2 Rr+1 | there is an x 2 X such that g(x)  u, f(x)  w} 

does not contain a vertical line. 

Solution. 
We note that �q is closed and convex, and that 

q(µ) = inf 8 µ 2 Rr . 
u2Rr 

{p(u) + µ0u}, 

Since q(µ)  p(0) for all µ 2 Rr, given the feasibility of the problem [i.e., p(0) < 1], we see that 
q⇤ is finite if and only if q is proper. Since q is the conjugate of p(�u) and p is convex, by the 
Conjugacy Theorem, q is proper if and only if p is proper. Hence (i) is equivalent to (ii). 

We note that the epigraph of p is the closure of M . Hence, given the feasibility of the problem, 
(ii) is equivalent to the closure of M not containing a vertical line. Since M is convex, its closure 
does not contain a line if and only if M does not contain a line (since the closure and the relative 
interior of M have the same recession cone). Hence (ii) is equivalent to (iii). 

Problem 5 

Consider a proper convex function F of two vectors x 2 Rn and y 2 Rm . For a fixed (x̄, ȳ) 2
dom(F ), let @xF (x̄, ȳ) and @yF (x̄, ȳ) be the subdi↵erentials of the functions F (·, ȳ) and F (x̄, ) at ·
x̄ and ȳ, respectively. (a) Show that 

@F (x̄, ȳ) ⇢ @xF (x̄, ȳ) ⇥ @yF (x̄, ȳ), 

and give an example showing that the inclusion may be strict in general. (b) Assume that F has 
the form 

F (x, y) = h1(x) + h2(y) + h(x, y), 

where h1 and h2 are proper convex functions, and h is convex, real-valued, and di↵erentiable. Show 
that the formula of part (a) holds with equality. 

Solution. 
(a) We have (gx, gy) 2 @F (x̄, ȳ) if and only if 

F (x, y) � F (x̄, ȳ) + gx
0 (x � x̄) + gy

0 (y � ȳ), 8 x 2 Rn , y 2 Rm . 

By setting y = ȳ, we obtain that gx 2 @xF (x̄, ȳ), and by setting x = x̄, we obtain that gy 2
@yF (x̄, ȳ), so that (gx, gy) 2 @xF (x̄, ȳ) ⇥ @yF (x̄, ȳ). 

For an example where the inclusion is strict, consider any function whose subdi↵erential is not 
a Cartesian product at some point, such as F (x, y) = |x + y| at points (x̄, ȳ) with x̄ + ȳ = 0. 
(b) Since F is the sum of functions of the given form, we have 

@F (x̄, ȳ) = {(gx, 0) | gx 2 @h1(x̄)} + {(0, gy) | gy 2 @h2(ȳ)} + {rh(x̄, ȳ)} 

[the relative interior condition of the proposition is clearly satisfied]. Since 

rh(x̄, ȳ) = (rxh(x̄, ȳ), ryh(x̄, ȳ)), 

@xF (x̄, ȳ) = @h1(x̄) + rxh(x̄, ȳ), 

@yF (x̄, ȳ) = @h2(ȳ) + ryh(x̄, ȳ), 

the result follows. 

4 3. (Directional Derivative of Extended Real-Valued Functions)
Let f : Rn 7−→ (−∞,∞] be a convex function, and let x be a vector in
dom(f). Define

f ′(x; y) = inf
α>0

f(x+ α)− f(x)

α
, y ∈ Rn

Show the following:
(a) f ′(x;λy) = λf ′(x; y) for all λ ≥ 0 and y ∈ Rn;
(b) f ′(x; ·) is a convex function;
(c) −f ′(x;−y) ≤ f ′(x; y) for all y ∈ Rn
Solution:
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CHAPTER 4: SOLUTION MANUAL

4.1 (Directional Derivative of Extended Real-Valued Functions)

(a) Since f ′(x; 0) = 0, the relation f ′(x; λy) = λf ′(x; y) clearly holds for λ = 0
and all y ∈ ℜn. Choose λ > 0 and y ∈ ℜn. By the definition of directional
derivative, we have

f ′(x; λy) = inf
α>0

f
(
x + α(λy)

)
− f(x)

α
= λ inf

α>0

f
(
x + (αλ)y

)
− f(x)

αλ
.

By setting β = λα in the preceding relation, we obtain

f ′(x; λy) = λ inf
β>0

f(x + βy) − f(x)

β
= λf ′(x; y).

(b) Let (y1, w1) and (y2, w2) be two points in epi
(
f ′(x; ·)

)
, and let γ be a scalar

with γ ∈ (0, 1). Consider a point (yγ , wγ) given by

yγ = γy1 + (1 − γ)y2, wγ = γw1 + (1 − γ)w2.

Since for all y ∈ ℜn, the ratio

f(x + αy) − f(x)

α

is monotonically nonincreasing as α ↓ 0, we have

f(x + αy1) − f(x)

α
≤ f(x + α1y1) − f(x)

α1
, ∀ α, α1, with 0 < α ≤ α1,

f(x + αy2) − f(x)

α
≤ f(x + α2y2) − f(x)

α2
, ∀ α, α2, with 0 < α ≤ α2.

Multiplying the first relation by γ and the second relation by 1 − γ, and adding,
we have for all α with 0 < α ≤ α1 and 0 < α ≤ α2,

γf(x + αy1) + (1 − γ)f(x + αy2) − f(x)

α
≤ γ

f(x + α1y1) − f(x)

α1

+ (1 − γ)
f(x + α2y2) − f(x)

α2
.

From the convexity of f and the definition of yγ , it follows that

f(x + αyγ) ≤ γf(x + αγy1) + (1 − γ)f(x + αy2).
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(
f ′(x; ·)
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2
Combining the preceding two relations, we see that for all α ≤ α1 and α ≤ α2 ,

f(x + αyγ) − f(x)

α
≤ γ

f(x + α1y1 ) − f(x)

α1
+ (1 − γ)

f(x + α2y2 ) − f(x)

α2
.

By taking the infimum over α, and then over α1 and α2 , we obtain

f ′(x; yγ) ≤ γf ′(x; y1 ) + (1 − γ)f ′(x; y2 ) ≤ γw1 + (1 − γ)w2 = wγ ,

where in the last inequality we use the fact (y1 , w1 ), (y2 , w2 ) ∈ epi
(
f ′(x; ·)

)
Hence

the point (yγ , wγ) belongs to epi
(
f ′(x; ·)

)
, implying that f ′(x; ·) is a convex

function.

(c) Since f ′(x; 0) = 0 and (1/ 2)y + (1/ 2)(−y) = 0, it follows that

f ′(x; (1/ 2)y + (1/ 2)(−y)
)

= 0, ∀ y ∈ ℜn.

By part (b), the function f ′(x; ·) is convex, so that

0 ≤ (1/ 2)f ′(x; y) + (1/ 2)f ′(x; −y),

and
−f ′(x; −y) ≤ f ′(x; y).

(d) Let a vector y be in the level set
{
y | f ′(x; y) ≤ 0

}
, and let λ > 0. By part

(a),
f ′(x; λy) = λf ′(x; y) ≤ 0,

so that λy also belongs to this level set, which is therefore a cone. By part (b),
the function f ′(x; ·) is convex, implying that the level set

{
y | f ′(x; y) ≤ 0

}
is

convex.
Since dom(f) = ℜn, f ′(x; ·) is a real-valued function, and since it is convex,

by Prop. 1.4.6, it is also continuous over ℜn. Therefore the level set
{
y | f ′(x; y) ≤

0
}

is closed.
We now show that({

y | f ′(x; y) ≤ 0
})∗

= cl
(
cone

(
∂f(x)

))
.

By Prop. 4.2.2, we have
f ′(x; y) = max

d∈∂f(x)
y′d,

implying that f ′(x; y) ≤ 0 if and only if maxd∈∂f(x) y′d ≤ 0. Equivalently,
f ′(x; y) ≤ 0 if and only if

y′d ≤ 0, ∀ d ∈ ∂f(x).

Since

y′d ≤ 0, ∀ d ∈ ∂f(x) ⇐⇒ y′d ≤ 0, ∀ d ∈ cone
(
∂f(x)

)
,

it follows from Prop. 3.1.1(a) that f ′(x; y) ≤ 0 if and only if

y′d ≤ 0, ∀ d ∈ cone
(
∂f(x)

)
.

Therefore {
y | f ′(x; y) ≤ 0

}
=

(
cone

(
∂f(x)

))∗
,

and the desired relation follows by the Polar Cone Theorem [Prop. 3.1.1(b)].
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